On the approximate solution of K-positive eigenvalue problems Tu − λSu = 0
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولOn the Least Squares Solution of Inverse Eigenvalue Problems
An inverse eigenvalue problem where a matrix is to be constructed from some or all of its eigenvalues may not have a real valued solution at all An approximate solution in the sense of least squares is sometimes desirable Two types of least squares problems are formulated and explored in this paper In spite of their di erent appearance the two problems are shown to be equivalent Thus one new nu...
متن کاملApproximate Antilinear Eigenvalue Problems and Related Inequalities
If T is a complex symmetric operator on a separable complex Hilbert space H, then the spectrum σ(|T |) of √ T ∗T can be characterized in terms of a certain approximate antilinear eigenvalue problem. This approach leads to a general inequality (applicable to any bounded operator T : H → H), in terms of the spectra of the selfadjoint operators ReT and ImT , restricting the possible location of el...
متن کاملStudies of Three-Body B^+→D ̅^* 〖(2007)〗^0 K^+ K ̅^0 and B^0→D^* 〖(2010)〗^- K^+ K ̅^0 Decays
We analyze three-body decays of and . Under the factorization approach, there are tree level diagrams for these decay modes and the transition matrix element of decay is factorized into a form factor multiplied by decay constant and form factor multiplied into weak vertices form factor. The transition matrix element of decay is also factorized into a form factor multiplied into weak vertic...
متن کاملNumerical Solution of Linear Eigenvalue Problems
We review numerical methods for computing eigenvalues of matrices. We start by considering the computation of the dominant eigenpair of a general dense matrix using the power method, and then generalize to orthogonal iterations and the QR iteration with shifts. We also consider divide-and-conquer algorithms for tridiagonal matrices. The second part of this survey involves the computation of eig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1975
ISSN: 0022-247X
DOI: 10.1016/0022-247x(75)90007-4